Jump to content

Search the Community

Showing results for tags 'samsung'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Forum Introduction & Feedback
    • Site Announcements, Rules & New Member Intros
    • TechInferno Forum Feedback
  • Tech News & Reviews
    • News & Reviews
  • Notebooks & e-GPU Discussions
    • DIY e-GPU Projects
    • General Notebook Discussions
    • Notebook OEM Subforums
    • What Notebook Best Fits My Needs?
    • Legacy Articles
  • Desktop & General Hardware
    • General Desktops Discussion
    • Desktop Hardware
    • Overclocking, Cooling & Build Logs
  • Software, Networking & PC Gaming
    • PC Gaming
    • Video Driver Releases & Discussion
    • Networking
    • General Software Discussion
  • Everything Else
    • Off Topic

Categories

  • SVL7 & Klem VBIOS Mods
    • AMD
    • Alienware M11x R3
    • Alienware M14x R2
    • Alienware M17x R4
    • Alienware M18x R1
    • Alienware M18x R2
    • Kepler VBIOS
    • Lenovo Y400-Y500
    • Lenovo Y410p-Y510p
    • Lenovo Y580-Y480
    • Legacy BIOS/VBIOS
    • Maxwell VBIOS
    • Sony Vaio SVS13 / SVS15 series
  • BAKED BIOS Mods
    • Clevo
  • Utilities

Product Groups

  • Tech|Inferno Elite Membership
  • Hardware

Categories

  • Frontpage News
    • General News
    • Reviews
    • Hardware News
    • Software News
    • PC Gaming News
    • Science & Technology News
  • Promoted Posts
    • Guides
    • Hardware
    • Software

Categories

  • Hardware
    • Notebooks and Components
    • Desktop and Components
    • Phones
    • Accessories
  • Software
    • PC Games
    • All Other Software

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Steam


AIM


MSN


Website URL


Yahoo


Jabber


Skype


Location


Interests


Occupation

Found 11 results

  1. Hi guys, I need some help from you guys if you wouldn't mind. I'm useless Specs:- Samsung RV520 8gb DDR3 I7 2720qm @2.2ghz 1x HDD 500gb 1x HDD 300gb Nvidia GTX 650 Ti BOOST EXP GDC BEAST 8.5c DIY Setup 1.3 DELL 220w PSU After a lot of messing around I have managed to get this egpu to work when downgrading to 2gb, Which makes me think I just need to change my TOLUD to get it to work. I have read and tried to make a successful DSDT file however I don't really know what I'm doing with these driver edits and haven't been able to get it to work particularly the error fixing on compiling the dsdt. However When I did have it working on 2gb ram. I ran heaven Bench, The GTX 650 under load makes strange noises and crashes the display driver multiple times. Could any of you more knowledgeable individuals give me a hand please Thanks
  2. Samsung's new Galaxy A9, a premium midrange phone with a design of glass and metal will rock a 6-incher FullHD (1080p) AMOLED panel, minimal bezel and 2.74mm width as well as a 4000 mAh battery with fast charging. The package will include: A Snapdragon 652 (Quad-core 1.8GHz ARM Cortex A72 + Quad-core 1.2GHz Cortex A53, Adreno 510 GPU) with 3GB of RAM and internal storage of 32GB, expandable with the help of a microSD card. It will come with a 13MP primary camera with a wide f/1.9 aperture and optical image stabilization. On the front there's an 8MP snapper behind an equally bright lens. A fingerprint sensor inside the home button, complete with Samsung Pay support. Wi-Fi a/b/g/n (no ac, though). Bluetooth v4.1 and GPS/Beidou for positioning as well as NFC. Unfortunately it will come with a Lollipop 5.1 and pricing and availability remain to be detailed. Source: GSM Arena
  3. Samsung's new Galaxy A9, a premium midrange phone with a design of glass and metal will rock a 6-incher FullHD (1080p) AMOLED panel, minimal bezel and 2.74mm width as well as a 4000 mAh battery with fast charging. The package will include: A Snapdragon 652 (Quad-core 1.8GHz ARM Cortex A72 + Quad-core 1.2GHz Cortex A53, Adreno 510 GPU) with 3GB of RAM and internal storage of 32GB, expandable with the help of a microSD card. It will come with a 13MP primary camera with a wide f/1.9 aperture and optical image stabilization. On the front there's an 8MP snapper behind an equally bright lens. A fingerprint sensor inside the home button, complete with Samsung Pay support. Wi-Fi a/b/g/n (no ac, though). Bluetooth v4.1 and GPS/Beidou for positioning as well as NFC. Unfortunately it will come with a Lollipop 5.1 and pricing and availability remain to be detailed. Source: GSM Arena View full article
  4. So I didn't like that the memory on my 980m only clocked to 6.4 GHz after raising the voltage to 1.48V from 1.35V, and wanted my memory to run even faster. I knew someone with a spare 970, so we made a deal where I buy the card, and if it still worked after I switched all the memory chips, he'd buy it back (for reduced amount if it could no longer do 7GHz, but at least 6GHz). Long story short, he bought the card back and I got faster memory. MSI 970 4GB Lightning original memory: Samsung K4G41325FC-HC28 (7GHz rating, 8GHz max overclock) MSI 980m 4GB original memory: Hynix H5GQ4H24MFR-T2C (6 GHz rating, 6.4GHz max overclock) Both cards are GM204 chips. The 980m has one less CUDA core block enabled than the 970, but it has the full 256-bit memory interface and L2 cache with no 3.5GB issues, while the 970 is 224-bit with 1/8th of the L2 cache disabled. Both cards are 4GB with 8 memory chips. I highly suspected this memory swap would work because video cards read literally nothing from a memory chip. There is no asking for what the chip is or even the capacity. They write data to it and hope they can read it back. Memory manufacturer information read by programs like GPU-z isn't even read from the memory. It's set by an on-board resistor. I also had changed multiple memory chips in the past, so was fairly confident I could physically do the job. I started with just one chip switched from both cards. This meant both cards were running a mix of memory from different manufacturers and of different speed ratings, but same internal DRAM array configuration. Both cards worked. Here is a picture of the 980m with one chip switched over: Now how did the cards react? The 980m behaved no differently. No change in max overclock. The 970 though... I expected it to be slower... but... 970 with 1 Hynix chip, 7 Samsung (originally 8 Samsung) 7GHz = Artifacts like a crashed NES even at desktop 6GHz = Artifacts like a crashed NES even at desktop 5GHz = Artifacts like a crashed NES even at desktop 2GHz = Fully Stable, 2d and 3d I didn't try 3GHz or 4GHz, but yeah, HUGE clock decrease. I shrugged though and kept switching all the memory figuring that as long as it worked at any speed, I could figure out the issue later. With switching more chips through 7/8 switched there was no change in max memory clocks. What was really fun was when I had 7/8 chips done. My GDDR5 stencil got stuck and ripped 3 pads off the final Samsung chip. Needless to say there was a very long swearing spree. Looking up the datasheet I found that 2 pads were GND, and a 3rd was some active low reset. Hoping that the reset was unused, I checked the 970's side of the pad and found it was hardwired to GND. This meant the signal was unused. I also got a solder ball on a sliver of one of the GND pads that was left, so I was effectively only missing a single GND connection. I put the mangled 8th chip in the 980m and it worked. Net gain after all of this... 25 MHz max overclock. Something was obviously missing. I figured I would switch the memory manufacturer resistor, hoping that would do something. I saw that Clyde found this resistor on a k5000m, and switching it to the Hynix value from Samsung had no effect for him. He found that for Hynix on the k5000m the value was 35k Ohms, and for Samsung 45k Ohms. I searched the ENTIRE card and never found a single 35k Ohm resistor. Meanwhile the 970 also worked with all 8 chips swapped, at a paltry 2.1 GHz. Then I got lucky. Someone with a Clevo 980m killed his card when trying to change resistor values to raise his memory voltage. His card had Samsung memory. He sent his card to me to fix, and after doing so I spent hours comparing every single resistor on our boards looking for a variation. Outside of VRM resistors there was just a single difference: On his card (his is shown here) the boxed resistor was 20k Ohms. On mine it was 15k Ohms. I scraped my resistor with a straight edge razor (I could not find a single unused 20k resistor on any of my dead boards) raising it to 19.2k, hoping it was close enough. And it was! Prior to this I also raised the memory voltage a little more from 1.48V to 1.53V. My max stable clocks prior to the ID resistor change were 6552 MHz. They are now 6930 MHz. 378 Mhz improvement. Here's a 3dm11 run at 7.5 GHz (not stable, but still ran) http://www.3dmark.com/3dm11/10673982 Now what about the poor 2GHz 970? I found its memory ID resistor too: Memory improved from 2.1 GHz to 6.264 GHz. Surprisingly the memory was slower than it was on the 980m. I expected the 970's vBIOS to have looser timings built in to run the memory faster. As for why the memory was over 100MHz slower than the 980m, 980m actually has better memory cooling than the 970. With the core at 61C I read the 970's backside memory at 86C with an IR thermometer. The Meanwhile the 980m has active cooling on all memory chips, so they will be cooler than the core. In addition, the 980m's memory traces are slightly shorter, which may also help. The 980m at 6.93 GHz is still slower than the 8 GHz that the 970 was capable of with the same memory. I'm not sure why this is. Maybe memory timings are still an issue. Maybe since MSI never released a Hynix version of the 970 meant leftover timings for an older card like a 680 were run, instead of looser timings that should have been used (I know in system BIOS tons of old, unused code get pushed on generation after generation). I don't know, just guessing. Talking to someone who knows how this stuff works would be great. I still want 8 GHz. Some more pics. Here's one with the 970 about to get its 3rd and 4th Hynix chips: Here's my 980m with all memory switched to Samsung. Sorry for the blurriness: So in summary: 1. It is possible to mix Samsung and Hynix memory, or switch entirely from one manufacturer to another, with some limitations. 2. There is a resistor on the pcb that is responsible for telling the GPU what memory manufacturer is connected to it. This affects memory timings, and maybe termination. It has a large impact on memory speed, especially for Hynix memory. This resistor value can be changed to another manufacturer. It is not guaranteed that the vBIOS will contain the other manufacturer's timings. If it does they may not be 100% correct for your replacement memory. 3. If you take a card meant for Hynix memory, you can mix Samsung memory of the same size if it is a faster memory. If the memory is the same speed, the penalty for running Samsung with Hynix timings may hurt memory clocks. 4. If you take a card meant for Samsung memory, you cannot mix any Hynix memory without MAJOR clock speed reductions without also changing the memory manufacturer resistor. It is not guaranteed that the vBIOS will contain the other manufacturer's timings, or if it does 100% proper timings for your specific memory. 5. For Kepler cards the Samsung resistor value is 45k, and for Hynix 35k. For Maxwell cards the Samsung resistor value is 20k, and Hynix 15k. Next up is changing the hardware ID to be a 980 notebook. Clyde also found HWID to have an impact on the number of CUDA core blocks enabled. In about a month I can get a hold of a 970m that someone is willing to let me measure the resistor values on. It has the same pcb as the 980m. Does Nvidia still laser cut the GPU core package? We will find out. Full thread can be found here: https://www.techinferno.com/index.php?/forums/topic/9021-hardware-mod-gtx980m-hynix-to-samsung-memory-swap/#comment-134361
  5. A little more than a year ago, NVIDIA, one of the largest graphics processing unit (GPU) companies in the world, claimed Samsung infringed on three of it's core patents and asked the ITC to ban Samsung smartphones and tablets that used Samsung's Exynos SoC (system on chip) and Qualcomm's Snapdragon SoC. However, an ITC administrative law judge ruled that Samsung and Qualcomm did not infringe on two of NVIDIA's patents and declared the third that they did infringe to be invalid. After the case went to the full ITC commission, it upheld the administrative law judge's ruling in favor of Samsung. In turn, Samsung counter-sued NVIDIA claiming that it had violated three of Samsung's patents, specifically 6,147,385, 6,173,349 and 7,804,734 which date back to the 1990s covering implementation of SRAM. And now an ITC administrative law judge (ALJ) has found NVIDIA did violate those patents and the case is set to go before the full ITC commission. NVIDIA argues that the patents Samsung used in its countersuit are outdated and no longer used in modern designs: "We look forward to seeking review by the full ITC which will decide this case several months from now." One of the three patents is set to expire in 2016. NVIDIA, despite being the world leader in visual computing on the desktop, has not had much success in replicating that dominance in mobile designs with it's Tegra SoC and has since moved on to using its technology in other products and applications such as the Drive PX self-driving platform and it's consumer SHIELD android based gaming box. Sources: Seeking Alpha, Anandtech
  6. A little more than a year ago, NVIDIA, one of the largest graphics processing unit (GPU) companies in the world, claimed Samsung infringed on three of it's core patents and asked the ITC to ban Samsung smartphones and tablets that used Samsung's Exynos SoC (system on chip) and Qualcomm's Snapdragon SoC. However, an ITC administrative law judge ruled that Samsung and Qualcomm did not infringe on two of NVIDIA's patents and declared the third that they did infringe to be invalid. After the case went to the full ITC commission, it upheld the administrative law judge's ruling in favor of Samsung. In turn, Samsung counter-sued NVIDIA claiming that it had violated three of Samsung's patents, specifically 6,147,385, 6,173,349 and 7,804,734 which date back to the 1990s covering implementation of SRAM. And now an ITC administrative law judge (ALJ) has found NVIDIA did violate those patents and the case is set to go before the full ITC commission. NVIDIA argues that the patents Samsung used in its countersuit are outdated and no longer used in modern designs: "We look forward to seeking review by the full ITC which will decide this case several months from now." One of the three patents is set to expire in 2016. NVIDIA, despite being the world leader in visual computing on the desktop, has not had much success in replicating that dominance in mobile designs with it's Tegra SoC and has since moved on to using its technology in other products and applications such as the Drive PX self-driving platform and it's consumer SHIELD android based gaming box. Sources: Seeking Alpha, Anandtech View full article
  7. South Korean site etnews reports that AMD's next generation Greenland GPU, scheduled to be released in Q2 2016, will be produced by both Samsung and Global Foundries using 14 nm FinFET LPP. Since both Samsung and Global Foundries share a common IP for 14 nm LPP, AMD will be in a position to leverage both of them for maximum production capacity. TSMC, which traditionally produces GPUs for AMD and it's rival NVIDIA, lost AMD's contract due to it's inability to keep up with yield and supply demands. Greenland is expected to offer 2x the energy efficiency of the current GCN architecture and is AMD's direct competitor to NVIDIA's Pascal. Source: WCCFTech This is yet another win for Samsung which has managed to steal back Apple from TSMC and will also be producing chips for Qualcomm. It will be interesting to see whether AMD being on 14nm LPP will give it any advantage over NVIDIA who reportedly will be using TSMC's 16nm FinFET+ for Pascal.
  8. South Korean site etnews reports that AMD's next generation Greenland GPU, scheduled to be released in Q2 2016, will be produced by both Samsung and Global Foundries using 14 nm FinFET LPP. Since both Samsung and Global Foundries share a common IP for 14 nm LPP, AMD will be in a position to leverage both of them for maximum production capacity. TSMC, which traditionally produces GPUs for AMD and it's rival NVIDIA, lost AMD's contract due to it's inability to keep up with yield and supply demands. Greenland is expected to offer 2x the energy efficiency of the current GCN architecture and is AMD's direct competitor to NVIDIA's Pascal. Source: WCCFTech This is yet another win for Samsung which has managed to steal back Apple from TSMC and will also be producing chips for Qualcomm. It will be interesting to see whether AMD being on 14nm LPP will give it any advantage over NVIDIA who reportedly will be using TSMC's 16nm FinFET+ for Pascal. View full article
  9. So I got a couple of these brand new and one is recognized just fine and the second one is not. Do I have a bad drive from the factory? or is there a limit with the A05 BIOS keeping me from trying to RAID something with this much capacity? Thoughts? Suggestions? During boot the synopsis says something like: 'not compatible' even though I was able to format it NTFS from within Windows... scratching my head... Thanks to the forum for all the info. With the help of a LOT of surfing this site I was able to max out my AW M18x R1. I was a little hesitant to put a 15mm thick drive in the 'ole girl but 2 weeks later and things are running just fine. In case anyone else was on the fence I thought I would share. My CMOS battery decided to die somewhere during the process but other than that, the whole job went pretty well. Those damn plastic connectors had me sweating a bit tho'
  10. Funny video: 24 256GB Samsung MLC SSD's (RAID) Awesomeness
  11. I know some people were waiting for higher capacity storage drives with standard height, I found this. "Less than a year after rolling out the 12.5mm thick 1TB Spinpoint MT2 hard drive, Samsung Electronics is taking the spotlight to announce a 1TB 2.5-inch drive with a 'standard' height of 9.5mm, the Spinpoint M8. Samsung's newest mobile solution packs two 500GB platters, has a SATA 3.0 Gbps interface, a working speed of 5400 RPM, 8MB of cache, and includes the EcoSeek and NoiseGuard technologies which ensure a quiet operation. The 1TB Spinpoint M8 costs $129 and is now shipping worldwide." Source
×

Important Information

By using this site, you agree to our Terms of Use. We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.