Jump to content

batyanko

Registered User
  • Posts

    38
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by batyanko

  1. Sorry, I have neither bins not even my 2570p any more. I hope some of the other people here do.
  2. Both are fine. In fact, a laptop can handle even higher range of voltages just fine, and especially high-end ones like EliteBook series. Yes, this is a known issue for laptops that were spilled on with Coca-Cola or beer :)) Stock+defaults should be always fine, unless you need something fancy. Maybe read what others achieved modding BIOS in that case Got a ~$5 2xUSB3.0 card on AliExpress got very good speeds, but rather fragile build quality.
  3. Try resetting BIOS defaults, plug one stick at a time, etc. Sometimes BIOS doesn't make good sense of SPD memory info to set correct timings and memory frequency, so you need to give it another chance. A bit surprising for me though, never noticed such problems with IvyBridge. Mostly with an AM3 AsRock mobo (it was so bad it was choosing timings that crashed the system), but there at least I could set timings and frequency manually
  4. That was interesting to test. 3720qm and a 3320m, both at 2.60 GHz nominal freqs. Test bench: Dell Latitude E6430, 2x8GB DDR3-1600 Linux Mint 20 at min. brightness radio off Battery off Idle Watts shown on Kill-a-watt thingie: 3720qm - 7.0 W 3320m - 6.8 - 6.9 W I would call that a 0.15 Watts difference, rather than 1.5-3.0 Watts. Hardly a factor to energy consumption. Though its is another question how often you will be at those Watts in Windows 10. Pretty rarely I guess. So here is a test of a modest load, watching .avi in VLC. Core loads averaging around 3%. 3720qm - ~14.5 W 3320qm - ~13.8 W Here the difference grows to about 0.8 W. Seems that the i7 is getting inefficient due all cores being woken up, while still not much to do. Another interesting note - underclocking CPU and iGPU doesn't seem to matter, those minimum frequencies seem to be the preferred and sufficient mode for it even without forcing these frequencies. Finally decided to pitch 100% load on 2 cores at 2400 MHz against 4 cores at 1200 MHz - to test the popular opinion that a quad-core at low frequencies is more efficient than a dual-core at higher frequencies. So I ran a stress test of 4 threads at 2400 MHz on the 3320m, an of 8 threads at 1200MHz on the 3720qm. That should in a crude way be the same amount of (totally useless) work done per amount of time. (note radios here are on and WiFi is connected, realized that too late... substract, say, 0.8 W to compare with above readings) 3720qm - ~20.3 W 3320m - ~21.2 W Here the 7720qm already seems to be more efficient with around 0.9 W. IMO the third example is the most realistic level of load for everyday work, keeping in mind that modern websites are quite energy-hungry and browsers making good use of multi-threading. So my best bet for energy efficiency would be an underclocked quad-core i7, say, anywhere between 1200 and 2600 MHz. And yes, running on battery is one use case where Linux has clear advantage over Windows 10. Linux tends to do very little background work, compared with Windows 10. So yes, that should do it. Make sure to underclock the iGPU too, that can be quite the power hog. Limitations: these results may be non-representative due to binning. My impression on other i5s is consistent with what I observed above, but I admit this is the only i7 I have observed in detail. Photos of le scientific measurement equipment: https://photos.app.goo.gl/G1ChgoxWdchgiEwX9
  5. Idle consumption of quad i7 should be comparable to dual core, so it seems that certain things create load for the CPU. It seems you will need to do some research on what uses background CPU, which could be something as ridiculous as the Google animation on Chrome start page. Common heavy offenders are website ads or background Windows 10 processes, but the latter is only fixed by switching to Linux... And of course you could underclock, I do this often on battery. 1200Mhz is I think minimum for most Ivy Bridge, 4 cores at that frequency is alright for office work. Nice thing about this, SpeedStep dynamically lowers voltage at lower frequency, so underclocking is extra efficient.
  6. Socket G2 is another name for FCPGA988, it will be fine. They just used random stock image of desktop CPU. $128 is bit of a rip-off, but what do I know, alternative being flaky eBay sellers...
  7. I have been playing recently with battery alternatives for the 8570p (all involving wiring...) 1. One thing I did, I ripped the stock cells from a cheap after-market battery and stuffed it with good 3500MAh cells. It works, but I find calibration a bit tedious, as the OS tends to sleep/power-off at voltages way above cell design termination (something like 3.3V vs 2.5V). Which results in less-than-spectacular Wh ratings 2. Another thing I did - wired another 3 cells in parallel, effectively getting a 9-cell battery. Bit longer-lasting, but re-calibration takes even longer (https://photos.app.goo.gl/qSzCnPaL2KGNvQ7i7) Both of the above rely on the battery (i.e. the board inside) being a non-original one, which generally is known to allow fiddling (original ones for example have pre-programmed max cycle count, and some even reduce capacity to protect ageing cells. Obviously inconvenient for our purposes). However my non-original battery turned out to be too much of a cheapo, it cuts at loads above ~60W which is a problem for some purposes. 3. This is my current project: feeding 19V directly to the power jack, by cable from an external battery. This consists of the following things: 3.1 Battery configuration of your own liking - for example a setup 3x3 of 18650 sticks, resulting in a battery of 11.2V nominal, and capacity of 10500MAh in case of 3500MAh cells. 3.2 DC-DC converter that converts whatever voltage the battery feeds into it, to 18.5 or 19.5 V (or anything in between or around it is usually fine). Probably $10-15 on AliExpress or your local electronics shop. 3.3 Charger jack with the center pin wired with resistors to the V+ wire, so that it gives between 5 and 6 volts (so we fool the laptop thinking it's a real charger). I'm not an expert in electronics so do your own reading if you want to do this one. One mistake I initially made was use low-ohms resistors (like 5 and 14 Ohms), which set them on fire... Now I'm using probably 5K and 14K Ohm resistors. I tested this one and it worked nicely. https://photos.app.goo.gl/7rPJje77v8hg6yZT6 Maybe always good to mention - be careful fiddling with the 18650 cells. They can release ridiculous amounts of energy if shorted (that is, you can set yourself on fire, etc.)
  8. Giving it fresh air would help, but blowing more air into the fan doesn't seem much use. I think it takes quite tight engineering to achieve a turbine-like system of fans, so that the air flow speed at the fins increases noticeably. In this case MioIV's considerations of the heatpipe being a bottleneck already makes sense. If you want to improve from here, you rather need to widen the heat transfer bandwidth, that is, connect more pipes or a bigger pipe to the cpu.
  9. Yes, drilling holes above the fan will drop a few degrees. I consider this sufficient for mostly throttle-less experience. Okay, if you want it to last decades you may want to keep it yet cooler, but otherwise I find these temps safe enough. Btw. I got bottomless and never found a (reasonably priced) bottom cover, thanks to all you guys buying spare ones to drill on xD The pipe is surely not quite up to par, but if you decrease the temps at one end of the heat transfer system (i.e. at fan radiator), that will still lead to similar decrease of temps on the other end (i.e. at the chip). The bigger the temperature difference, the more powerful the heat transfer. Air at fan will be colder with drilled holes, because it comes directly from outside, rather than from other parts of the laptop as per standard design.
  10. Yep it's a nice idea, that room can be utilized. That copper plate can interface with the original heat pipe, is that what you intended? You can use thermal glue for OK results or solder it for maximum performance. Soldering however takes skill and consideration (a lot of things that can mess up). Another thing, how about using heat pipes instead of that copper plate? Pipes are more effective than plain copper, and may even be easier to get. However I am not knowledgeable if the cheap pipes on Aliexpress are good enough.
  11. Having a cousin with the same laptop sounds like a fortunate thing :)) You can just try combinations between CPU, battery and laptop (i.e. motherboard) until you narrow it down to one component. Unfortunately I still imagine this to be faulty board or CPU, as you recently mentioned that you have experienced problems on charger, too. A 65W charger is completely alright even with a 45W quad, as the rest of the laptop is remarkably power-efficient. Also I have played with my 3720QM on one board that totally wouldn't deliver more than 35W - in that case the CPU and iGPU still remained stable, but simply throttled frequency to minimum.
  12. If that only happens on battery, it sounds that there is weak/faulty power supply from the battery. That might originate in the battery but also somewhere on the power circuitry on the board (VRMs, caps, etc): Reasons are that when you pull power from the battery, you eventually convert 12V to Vcore, and from PSU you pull 19V, which possibly uses other power circuitry. As you try to get something rendered, the iGPU gets involved which I have noticed produces quite some load spices, especially on the quad i7s. Edit: The quad i7 basically uses x2 power than any of the dual-cores Now that's theory and I don't know how this particular motherboard is organized, and also not quite sure if the whole thing depends on chipset/graphics drivers. So you can still try a different Windows or Linux version. I don't like to repeat myself too much :)) but I would again suggest the easiest way to be a live Linux USB stick with something like Linux Mint. Just boot from it and you get a ready OS with Intel's drivers to mess with. Open a browser, run some 3D shooter from the store or download FurMark (look for v. 0.7)
  13. I had a very similar problem with a 2540p, but only with AC power connected. So as @Phobosse said, probably a power circuit issue. That 2540p turned on about 1 in 5 times, with ~5 sec wait necessary between retries, and I still wouldn't complain. So if your laptop always turns on the second time, that still sounds like good enough :)) Anyway it `might` be worth to try another AC adapter, if you happen to have one around. I find the 2570p quite pretentious about AC adapters, refusing other brands even with the same voltage. For example it won't take a Dell charger, while a Dell Latitude E5430 will do alright with the HP charger.
  14. Looks quite interesting, can you post us with some details on the soldering process when you are done? I am going to play with some video card cooling these days, so I'm looking for advice on suitable process and equipment: type of blowtorch, type of solder (chemical composition details would be great), etc.
  15. Are you guys sure it is not cached RAM that just stays there, waiting to be overwritten when needed? 16GB being not enough for normal work sounds kinda extreme, I actually exchanged my 2x8GB for 2x4GB + some $$, I just couldn't fill it up over 8GB. My typical usage is Android Studio + 1-2 Android Emulators + Browser with ~10 websites. Many would call that a demanding combination, And it still doesn't add up to 8 GB. All this on Linux Mint / Kubuntu, but it isn't supposed to differ that much from Windows regarding RAM usage (though other stuff works quite a bit faster than on Windows...).
  16. Work longer without fan spinning up? Pay less $$$ for electricity? Anyway, how do you undervolt that kind of CPU? Interested to know.
  17. Not sure if that USB will have full functionality anyway (other than storage), you might want to research that. Also make sure to get a CD-Rom caddy for the optical drive bay if you wanna put anything different than a DVD drive in it. For extra USB ports I use this express card. Poor build quality but it does the job. https://www.aliexpress.com/item/New-Express-Card-Expresscard-34mm-to-USB-3-0-2-Port-Adapter-PCI-Express-Card/32647044360.html?spm=a2g0s.9042311.0.0.Hcy6Fc
  18. I have that very same one from AliExpress. No, it does not work. It gets power for a few seconds on the +5 VDC USB lane, then shuts off completely after POSTing (no data, no current). So it seems that it is "hardware"-compatible, but disabled in BIOS like all other possible mini-PCIE devices, except for white-listed network cards. Kinda strange, considering that the very same Mini-PCIE gadget worked fine on a Acer Aspire One NAV-50 netbook (a very very very cheap machine ) So damn true, the 2570p is bit heavy... About the charger - last year about 20-30 chargers went through my hands, my impression was that Watt capacity was very tightly related to weight. That is, a charger gotta weigh at least that and that grams for 65W, that and that grams for 90W and so on.
  19. I have seen opinions that they are just too tiny and weak to make any difference, looking at the mentioned air flow characteristics. Personally I haven't got much clue about litres per minute, but the the low power draw (volts x amperes) equates to pretty low amounts of moved air, even if we consider that a quality Sunon cooler moves air more efficiently. Anyway I am curious to know what results you get with such a cooler. If you aim it well at a larger heatsink area / radiator and or stick some small heatsinks at the target spot, it might make a difference. Also you might well put several of them, since they are so small
  20. Good stuff, thanks for sharing! In line with that topic I thought I should share some stuff about power consumption, too. Recently I started fitting a Toshiba Satellite C870 for use - also an Ivy Bridge laptop. That model though has the power feed to the CPU capped at 35W in the BIOS and behaves really unstable with a 45W processor. So I played with 'turbostat' to see what frequencies result in what power consumption, which might be interesting for 2570p users, too (I actually ran the tests on the 2570p and on the C870 with identical results, except for the full boost speeds on the C870 which were unstable). Here are all the results - testing a Core-i5 2320M and Core-i7 3720QM at single-thread (1) stress, multi-threaded (8) stress and multi-threaded + Furmark. Also note the tests running at 2900MHz and 3200MHz mimicking a 3632QM. https://gist.github.com/batyanko/5fe88f89036f14483e84a7c6fe390829 Here are also results for a 3632QM, kindly shared by user haagch from phoronix.com forums: https://gist.github.com/ChristophHaag/b019a10c255f05046ffa52efc63b2b60 Some of my observations: - It seems that the 3720QM is not only able to run at 3632QM speeds when needed, but is also more efficient by ~4W. So there seems no good reason for choosing 3612QM or 3632QM over a 45W model. - GPU / IGP can be a huge power hog if stressed well with Furmark or a 3D game. - The i5-3230M could have easily been marketed as 30W, I totally couldn't push it over that mark. In fact, it cannot even do 16W unless you stress the GPU / IGP simultaneously. Note: CPU and Intel HD 400 GPU / IGP clock setting done on Kubuntu 17.10 using following commands: # Set CPU to 81% (3000MHz), base non-turbo clocks being not 99% but somewhere around 70% echo "81" | sudo tee /sys/devices/system/cpu/intel_pstate/max_perf_pct # Set GPU clock to 350MHz echo 350 | sudo tee /sys/class/drm/card0/gt_max_freq_mhz /sys/class/drm/card0/gt_boost_freq_mhz
  21. Yep, that was sure supposed to work. I already returned it to the seller who supposedly had the 3630QM working on a Lenovo T530, so I cannot check that anymore. Here in my country we have a postal service that gives you 15 minutes to check if the thing works, so there is no room for trying a lot of things. I totally agree with that, 2570p is supposed to be portable, and anyway the four i7 cores at 2.7GHz have a whole lot more performance than two i5 cores. What I was thinking of was a system of aluminium fins that fit somewhere *inside* the laptop, but that would take quite some tinkering and imagination. Otherwise of course, if you go out of the bottom cover you can put fans and heatsinks all over the place, but then it sure won't be that compact anymore.
  22. Good to hear that you got that 3740QM working. I would usually think that any QM would work on the 2570p, as I have a 3720QM myself, but last week I tried a 3630QM and it didn't POST. Still wondering if it was compatibility issue or just a broken CPU... About that heatsink mod, it looks like a nice extra bit of mass to slow down heating, allowing you to use longer bursts of high performance. Are you thinking about adding anything else to it? The way it is, the total surface of the heatsink is pretty much the same as the stock heatsink, though copper might provide a slightly better heat dissipation. For what I understand, the layman formula for heat dissipation effectiveness looks something like this: heatsink area * air circulation (adjusted with some coeffitients / weights that I neither completely understand nor can really express mathematically :)) So, to really get more heat dissipation performance, you would either want to add a fan blowing at the heatsink, or add more heatsink surface. For example I like what @shikyo did with that extra fan without having to modify the bottom cover too much: Now I'm writing all this because I really like the nice flat copper interface that you achieved there - it looks like the perfect base for adding more cooling. Specifically, I think it might be a nice idea to add some large system of aluminium fins, which can be bent conveniently to fit the available space under the hood. I have been considering something like that myself but haven't gotten around to do it.
  23. If you google "2570p bluetooth" and look at the images, it's the small green thingie between the speakers on the bottom front. Might even be visible througs a vent on the front, but I'm not sure (I never had the original cover :)) Granted you still got that live Linux USB stick, you can do something along the lines of "sudo lshw" on the terminal and see if it shows a bluetooth device or a "wireless" device that can be nothing else but bluetooth. Or try the answers in this thread: https://askubuntu.com/questions/301458/how-can-i-tell-if-my-laptop-has-bluetooth
  24. I just tried both CPU-Z on a properly installed Windows 8.1, and I-nex on a live Linux Mint 18.1. - CPU-Z reports a rPGA988B CPU. - I-Nex reports BGA1224: Since I have personally installed that 3720QM, I can sure tell there were more than enough pins on it So I-nex seems to detect the wrong socket on this CPU, and by all chances the 2570ps have normal pin-sockets for replacable CPUs.
  25. 1) You cannot upgrade a BGA processor unless you resolder it. Impossible for all practical purposes. 2) I don't believe that BGA 2570ps even exist. Anyone please correct me if I am wrong. 3) You can run something like Mini-Windows-XP from a USB, I use the one in Hirens Boot CD. Still not sure if CPU-Z will detect the socket type correctly. I would generally advise you to google the exact model number. Otherwise I am selling my 2570p and would gladly sell you the barebones, since I will be building a Toshiba C870 rig with the main components. But I don't know if you can even contact me about that, I think it is forbidden talking about buying/selling stuff here Probably you can look at the one and only "Custom 2570p" on Ebay.de and contact me there. Hope that is not that irregular thing to do.
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use. We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.